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EXECUTIVE SUMMARY 

Snowplow trucks serve a crucial role in winter maintenance activities by removing, 

loading and disposing of snow. An effective performance monitoring and analysis process can 

assist transportation agencies in managing snowplow trucks and maintaining normal functioning 

of roadways. Yet these trucks’ performance could deteriorate with age, incurring high 

maintenance costs and low efficiency. It is therefore necessary to determine the optimal 

utilization age for the replacement of these assets. To this end, we are presenting a 

methodological framework using a data-driven approach to estimate the optimal utilization age 

of snowplow trucks, taking into account both total costs and operational efficiency. Specifically, 

a cost-benefit analysis is conducted to determine the optimal life cycle for Class 8 snowplow 

trucks by leveraging purchase and resale data and maintenance costs through their service span.  

Meanwhile, to further analyze the operational efficiency at micro-level and to identify the 

crucial factors that lead to performance deterioration, a machine learning (ML) approach, 

random forest (RF) model, is implemented to predict truck performance using endogenous and 

exogenous attributes and rank the importance of those attributes. This micro-analysis can assist 

transportation agencies to improve truck replacement strategy by identifying key factors 

affecting trucks’ performance. Lastly, a sample application of the developed prediction model 

suggests the threshold of work intensity for preventing rapid deterioration of trucks’ performance 

under various working environments. 

For this project, the Utah Department of Transportation (UDOT) provides snowplow 

truck utilization data from 2000 to 2017. Exogenous features, such as weather and working 

environments, are collected as well for the purpose of analysis. According to the results of the 

cost-benefit analysis, the optimal life cycle for Class 8 snowplow trucks functioning in the State 

of Utah is 5 years. This analysis suggests a more frequent replacement cycle for snowplow trucks 

than what is currently implemented. Further, the annual working mileage, fuel consumption and 

service year are identified as the three most important factors associated with truck performance 

deterioration. The results provide additional guidance on the procurement, maintenance and 

replacement prioritization for Class 8 snowplow trucks. 
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1.0 INTRODUCTION 

1.1  Problem Statement 

Winter maintenance operation is essential to public mobility and safety, especially for 

areas suffering long periods of snow and storms (Kwon and Gu, 2017). In the United States, it is 

estimated that on average, annual winter road maintenance cost over $2.3 billion across the 

country in 2016 (FHWA, 2016). Winter maintenance operations involve applying de-icing 

chemicals, snow plowing, loading snow onto equipment and hauling the snow to disposal sites 

(Perrier et al., 2006). To fulfill these activities, snowplow trucks are paramount during the winter 

season, and an effective performance monitoring and analysis process would be beneficial to the 

program (Adams et al., 2003). On one hand, satisfying performance of snowplow trucks ensures 

efficient snow plowing, maintains normal functioning of the road network, and avoids any 

potential traffic accidents due to equipment malfunction. On the other hand, as the equipment 

ages, it becomes increasingly costly to maintain the trucks due to the expensive repair costs and 

rapid deterioration. 

Currently, the Utah Department of Transportation (UDOT) manages hundreds of Class 8 

snowplow trucks for winter maintenance activities including removing, loading, and disposing of 

snow. Generally, those snowplow trucks are sold once they are incapable of performing 

snowplow activities. Figure 1 shows the resale records of Class 8 snowplow trucks from 2000 to 

2017. Notice that most trucks have a life span of over 13 years, and their life cycles are mostly 

concentrated between 15 to 19 years (highlighted in red in Figure 1). Yet with a longer service 

span, truck performance is deteriorating, causing lower operational efficiency and higher 

maintenance costs. For instance, a portion of Class 8 snowplow trucks are equipped with “nested 

C-channel” frame rails. This type of frame rail can accelerate corrosion due to entrapped salts 

used for de-icing. Meanwhile, repairs to frame rail cracks can be very expensive and are only 

temporary. The maintenance costs thus would accumulate as trucks age, making them less 

reliable in servicing roads. As a result, a reliable method to accurately estimate the optimal life 

cycle to minimize the overall costs for snowplow trucks is desirable. 
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Figure 1 Resale records of Class 8 snowplow trucks from 2000 to 2017. 

Meanwhile, other than only calculating the optimal life cycle, predicting truck 

performance and identifying crucial factors that lead to performance depreciation are paramount 

as well. First of all, a number of trucks may still maintain decent performance at “optimal” 

replacement year determined by the model. As a result, replacing all trucks completely could be 

a significant waste of resources. Additionally, a better understanding of the performance can 

assist agencies in refining their replacement strategy and systematically determine the service 

continuity/termination at the micro-level. This would enable an efficient maintenance program 

that takes advantage of variations in truck performance. As a result, if truck performance can be 

monitored and predicted with high resolution and high accuracy, they can be replaced in time 

and help cut down maintenance expenses. 

1.2  Objectives 

This research project focuses on analyzing the life cycle and operational efficiency of 

Class 8 snowplow trucks in the State of Utah. Currently, UDOT is managing hundreds of Class 8 
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13 years. However, more frequent repairs can occur, accompanied with higher maintenance 

costs, as truck performance deteriorates with service age. As a result, it is necessary to conduct 

data-driven analysis to evaluate the total cost and find the best replacement cycle that minimizes 

the overall costs of the truck fleet while guaranteeing satisfactory performance during their 

service span. 

The first objective of this project is to develop a method to determine the optimal 

replacement year for the Class 8 snowplow truck fleet managed by UDOT. To achieve this,  

purchase and resales information, maintenance records, and working mileage records are used in 

this study. Specifically, purchase and resales records are used to estimate the cumulative 

depreciation cost with the increase of trucks’ service span. Then the maintenance costs are 

utilized to reflect the maintenance expense with inflation rate at different service years. Lastly, a 

cost-benefit curve is constructed to decide the optimal life cycle, which minimizes the overall 

costs for the snowplow truck fleet.  

Another objective of this project is to propose a machine learning (ML) technique, 

Random Forest (RF) model, that is capable of predicting truck performance with performance-

related endogenous and exogenous variables. Although the cost-benefit analysis helps 

transportation agencies identify the optimal replacement cycle for snowplow trucks, this macro-

level analysis fails to evaluate the operational efficiency for a single truck, and cannot capture 

key factors contributing to performance deterioration. In fact, a better understanding of truck 

performance can find existing trucks that may still maintain adequate performance at “optimal” 

replacement years determined by the model, thus avoiding wasting resources. Moreover, it can 

help agencies in complementing their replacement strategy and systematically determining the 

service continuity/termination at the micro-level. This enables a more efficient maintenance 

program: one that takes advantage of variations in truck performance. 

1.3  Scope 

This research breaks down into two parts: Estimating the optimal life cycle for Class 8 

snowplow trucks, and predicting the operational performance of trucks with different work 

intensities and in different working environments. 
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Tasks in optimal life-cycle analysis include: 

 Aggregate the maintenance costs data with consideration of inflation rate; 

 Build depreciation cost curve using trucks’ purchase and resales data; and 

 Perform a cost-benefit analysis to construct the overall costs curve for Class 8 

snowplow trucks with different service ages, and pinpoint the optimal replacement year. 

Tasks in truck performance prediction at micro-level include: 

 Implement RF to predict truck performance with snowplow trucks’ endogenous 

and exogenous features; 

 Identify the contributable factors leading to performance deterioration; and 

 Suggest the threshold of work intensity for preventing rapid deterioration with a 

sample application. 

To conduct the aforementioned tasks requires the support of a mass amount of historical 

data from multiple resources and jurisdictions. UDOT provides thorough utilization information 

of Class 8 snowplow trucks from 2000 to 2017 with 831 trucks in total, including working 

mileage data, maintenance costs records, and resales records. All snowplow trucks are 

distributed in the four regions statewide, namely the Salt Lake City region, Ogden region, Orem 

region, and Richfield region. Meanwhile, exogenous features, including terrain and weather 

information, are collected from other sources to further analyze the potential factors that cause 

the decrease in operational efficiency. 

1.4  Outline of Report 

The rest of the report is structured as follows. Chapter 2 summarizes literature on the 

cost-benefit analysis for the truck fleet and performance-prediction analysis using RF. Chapter 3 

illustrates the detailed formulation of the cost-benefit method and RF model. Chapter 4 describes 

the data sources used for this study, and Chapter 5 presents the results and findings. Lastly, 

Chapter 6 concludes the study and outlines recommendations for future research. 
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2.0  LITERATURE REVIEW 

2.1  Overview 

Cost-benefit analysis enables finding the optimal replacement cycle for a fleet of assets 

while RF can identify crucial factors causing performance depreciation of the fleet. This chapter 

presents the summary of previous studies on snowplow-truck fleet life-cycle analysis and 

performance prediction using RF. 

2.2 Parallel Snowplow-Truck Fleet Life-Cyle Analysis 

Past studies have witnessed the importance of snowplow trucks as the primary tool for 

public agencies to deliver their winter maintenance program. An effective snowplow program 

can reduce congestion, avoid hazards to pedestrian safety, and mitigate economic losses 

(Changnon and Changnon, 2007; Hanbali and Kuemmel, 1993; Li and Fernie, 2010). Naturally, 

the performance of snowplow trucks is of critical importance to the regions where winter storms 

and snowfalls are frequently encountered.  Thus, developing an effective performance 

monitoring and analysis process would be beneficial to the program. For example, a good 

performance from snowplow trucks ensures efficient plowing, maintains normal functioning of 

the road network, and avoids potential traffic accidents due to equipment malfunction. 

Conversely, as the equipment ages, it becomes increasingly expensive to maintain the trucks due 

to repair costs and rapid deterioration. If not replaced at an earlier age, a truck can continue to 

bring up the lifecycle cost. For instance, frequent usage of snowplow trucks can result in cracked 

frame issues due to erosion from snow. A cracked frame increases the risks to operators and 

pedestrians and the replacement for the entire truck frame is quite costly, at approximately 

$45,000. Given these considerations, it might be more cost effective to replace snowplow trucks 

with a properly selected cycle (Fan et al., 2011). To solve this problem, a method that can 

determine the life cycle with minimal overall costs for the snowplow truck fleet while 

guaranteeing needs and operational efficiency for road service is required. 

Previous studies related to snowplow-truck fleet life-cycle assessment attempted to 

address this issue via cost-benefit analysis. With that approach, the total cost curve across the 
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assumed service span is constructed, which consists of equipment purchase, maintenance, and 

depreciation costs. The goal is usually to determine an optimal life cycle that minimizes overall 

costs while guaranteeing operational efficiency across fleet service spans (Litman, 1998). For 

instance, Iowa DOT proposes a decision support system (DSS) based on cost-benefit method to 

optimize the equipment life cycle (Scheibe et al., 2017). Specifically, two types of snowplow 

trucks are analyzed in this study, the single-axle A07 and double-axle A12 snowplow trucks, 

which both have a replacement cycle of 15 years. To obtain the optimal life cycles, historical 

data over the past 9 years including purchase price and date, maintenance cost, and actual resale 

values are extracted. Additionally, they adjusted the maintenance event costs with an inflation 

rate of 4.23% for comparative analysis. By building total cost curves with cost-benefit method, 

the result suggests an optimal life cycle of 8 years for A07 and 6 years for A12. It is estimated 

that Iowa DOT could save approximately $8.2 million every year by shortening the current 

lifecycles to the recommended ones. In fact, the calculated optimal life cycle can vary greatly 

among different types of snowplow trucks. Wyrick and Erquicia (2008) use a similar approach to 

analyze the optimal life cycles for seven different types of snowplows in the state of Minnesota 

and conduct sensitivity analysis for purchase price, interest rate, depreciation value, and 

maintenance cost. The results indicate that the optimal replacement cycles range from 5 to 13 

years based on different types of trucks. This conclusion suggests the necessity of analyzing the 

optimal life cycle for Class 8 snowplow trucks based on their own circumstances in the State of 

Utah. 

2.3 RF Model and Performance Prediction 

RF is one of the ML methods. ML approaches analyze data first and then automate the 

building process of analytical models. These models can help identify potential patterns from the 

data and make predictions with minimal human intervention (Alpaydin, 2009). Currently, 

researchers use ML models for performance prediction in many fields, including finance, 

healthcare, engineering, marketing and manufacturing, among others (Langley and Simon, 

1995). For example, Ghobadian et al. (2009) use an artificial neural network (ANN) to predict 

diesel engine performance with regards to fuel consumption and exhaust emissions. Ma et al. 

(2017) apply convolutional neural network (CNN) to predict traffic speed to analyze the 
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performance of a large-scale network. Although both ANN and CNN generate high levels of 

predictive accuracy, they are not capable of interpreting the importance of various inputs to the 

results. RF is a classic tree-based ensemble model proposed by Breiman (2001). It combines 

multiple base models and derives the final result via weighted or unweighted voting or averaging 

(Dietterich, 2000). The main idea behind the ensemble model is that a series of base models can 

generate a more stable prediction and have stronger generalization ability than a single base 

model. In RF, the base models are decision trees (DTs). Apart from its stable structure, another 

highlight of RF is that it enables interpretation of feature importance by ranking those variables 

based on its interior tree structure. 

In fact, RF can be used for maintenance performance prediction for assets. A good 

illustration of this method is Bukhsh et al. (2019), where the authors use tree-based classification 

models, including DT, RF, and gradient-boosting decision tree, to predict the maintenance of 

railway switches. The results indicate that RF achieves the highest accuracy (0.70) for 

classifying the maintenance type among all models. In this case, accuracy is a measure of correct 

predictions using the model compared to the total data points. Meanwhile, Bukhsh et al. also find 

that functional location, service years and detected problems are the most important features in 

affecting the status of switches. This interpretability can facilitate the decision-making process 

for infrastructure managers and help prioritize future data collection efforts. 

2.4 Summary 

This chapter first summarized previous literature of truck fleet life-cycle analysis via 

cost-benefit method. Following that, a popular machine learning algorithm RF is introduced, 

which is often used for performance prediction problems at the micro-level. In the following 

chapters, we describe the mathematical formulation of cost-benefit method and RF, and 

subsequently demonstrate how these methods can be applied to obtain the optimal life cycle and 

evaluate the operational performance of a Class 8 snowplow truck fleet. 
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3.0  RESEARCH METHODS 

3.1  Overview 

This chapter describes cost-benefit method and RF model, respectively. The cost-benefit 

method utilizes maintenance information and estimates the depreciation trend of the snowplow 

truck fleet to pinpoint the optimal life cycle. RF is capable of predicting truck performance by 

learning features related to trucks’ work intensity (e.g. working mileage) and working 

environments (e.g. traffic volumes of the roads they serve). 

3.2  Cost-Benefit Method for Truck Fleet Analysis 

Cost-benefit analysis takes overall costs of the assets into consideration by constructing 

economics curves to identify the optimal life cycle. For a snowplow truck fleet, two types of 

costs are mainly considered - the maintenance cost and depreciation cost.  This section 

introduces the procedure of building the average total-costs curve for a truck fleet across 

different service spans. 

3.2.1 Maintenance Costs Calculation 

Maintenance costs refer to the expenses of any required repairs as well as the costs of 

preventive maintenance during their service span. The maintenance costs for Class 8 snowplows 

are generally originated from facility replacement and labor costs with related technicians. 

Additionally, it is important to consider the inflation rate to adjust the costs. This is because 

maintenance records span a long period of time up to 17 years. In order to construct the 

maintenance cost curve, the following steps are conducted: 

 Aggregate the maintenance records by service years for each snowplow truck, and  

sum up the total maintenance costs for all trucks at each service year; 

 Adjust the total annual maintenance costs with the inflation rate accordingly 

based on different service years; and 

 Divide the number of trucks in service at each service year with the corresponding 

adjusted annual total maintenance costs. 
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As a result, we can obtain the adjusted average maintenance costs at different service 

years, which can be further used for cost-benefit analysis. It is noted that the concept of service 

year is different from the concept of actual year. Service year refers to the time period from the 

time point that a truck started to service the roads. Two trucks with the same service year can be 

operating at different actual years. For instance, two snowplow trucks started their service at 

2000 and 2001 respectively (actual year), and both functioned for one year. In this case, they 

have the same service year of one, but the service year happens at different actual years. 

3.2.2 Depreciation Cost Estimation and Calculation 

Depreciation refers to the decrease in asset value in response to time. For Class 8 

snowplow trucks, their values start to decrease as they start to service the road. With the increase 

of service span, the depreciation cost for each service year is accumulating. In other words, the 

assets’ surplus value is decreasing with longer service span. The relationship between the 

cumulative depreciation cost and surplus value can be expressed as follows: 

𝑝𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 = 𝑠𝑣𝑛 + 𝑐_𝑑𝑒𝑝𝑛                            (1) 

where 𝑝𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 stands for the original purchase price, 𝑠𝑣𝑛 is the surplus value at the nth service 

year, and 𝑐_𝑑𝑒𝑝𝑛 is the cumulative depreciation costs at the nth service year. 

Yet in most cases, surplus value is not available. To estimate the cumulative depreciation 

cost across different service years, the declining balance (DB) method is used to predict the 

annual depreciation value of snowplow trucks first, and then cumulative depreciation cost can be 

derived. DB method is an accelerated depreciation method, in which the depreciation expense is 

the highest in the initial year and declines over service time (Mayer, 1947). The formulation for 

depreciation under the DB method is expressed as follows: 

𝑝 = 1 − √
𝑠

𝑐

𝑛
                (2) 

where 𝑝 is the percentage of annual depreciation; 𝑛 is the number of years of useful life; 𝑠 is the 

surplus value at the n
th

 year; and 𝑐 is the original purchase cost. Once the percentage of annual 

depreciation 𝑝 is derived, the annual depreciation cost at a given service year (𝑘) can be 

calculated based on the method as: 
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𝑑𝑒𝑝𝑘 = 𝑐 ∗ (1 − 𝑝)𝑘               (3) 

Finally, the cumulative depreciation costs from the start of service to the k
th

 service year can be 

derived as: 

𝑐_𝑑𝑒𝑝𝑘 = ∑ 𝑑𝑒𝑝𝑖
𝑘
𝑖=1                (4) 

In order to obtain the percentage of depreciation 𝑝 in Equation 2, we use the average 

resale value of trucks at a specific service year to represent the surplus value in this analysis. The 

detailed calculation will be presented in Chapter 5.2. 

3.2.3 Cost-Benefit Method 

Cost-benefit analysis enables the determination of optimal life cycle by observing the 

economic curve across different truck fleets’ service spans. Once the maintenance cost curve and 

cumulative depreciation cost curve are constructed, the annual average total cost (AATC) per 

truck per mile given a specific life cycle N for Class 8 snowplow trucks can be formulated as 

follows: 

𝐴𝐴𝑇𝐶𝑁 = ∑ (
𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒𝑖

𝑇𝑖
+ 𝐷𝑒𝑝𝑖)

𝑁
𝑖=1 /(𝑁 ∗ 𝑀𝑖𝑁)            (5) 

where 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒𝑖 is the overall adjusted maintenance costs at the i
th

 service year; 𝑇𝑖 is the 

total number of trucks in service at the i
th

 service year, 𝑀𝑖𝑁 is the sum of mileage records from 

the initial service year to the end of the life cycle. Finally, the cost-benefit curve can be plotted 

by calculating AATC with different life cycles N. The life cycle with the lowest cost in the curve 

is identified as the optimal life cycle (or replacement cycle) for Class 8 snowplow trucks. 

3.3 Framework of RF Model 

RF is a tree ensemble model, which consists of a number of base models. In this 

subsection, we first introduce the mechanism of its base model, the decision tree. Then, we detail 

the formulation of RF, the process of performance prediction, and its ability to identify the 

important factors influencing its performance. 
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3.3.1 DT Model 

DT is a popular supervised learning algorithm because it is computationally efficient. The 

tree-shaped model can split the data by different attributes for classification or regression 

purposes. Generally, a decision tree consists of a root node, several interior nodes and leaf nodes. 

One feeds training data into the root node and then splits these data into different interior nodes, 

based on data attributes. The node that helps split the dataset is called the father node, and the 

nodes after branching are called children nodes. If the samples in one node belong to the same 

class, this node terminates branching and becomes a leaf node. The tree grows recursively until 

all samples are assigned to leaf nodes. There are a range of additional models, built upon the 

basic structure of DT, that modify rules associated with data splits, branching and subtree 

pruning. The most popular DT models include ID3 (Quinlan, 1986), C4.5 (Quinlan, 2014) and 

classification and regression tree (CART) (Breiman, 1984) models. We detail the pseudocode for 

a simplified DT model in Figure 2. 

 

Figure 2 Pseudocode for a simplified decision tree model. 

In this pseudocode, information gain is an index to measure the classification ability 

given by one attribute. The larger the information gain, the stronger the classification ability. For 

each split, it chooses the attribute that can maximize the information gain. For instance, in CART 

(a binary decision tree), information gain by feature k is: 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛(𝑘) = 𝐺𝑖𝑛𝑖𝑓𝑎𝑡ℎ𝑒𝑟 − (
|𝑆𝑙𝑒𝑓𝑡|

|𝑆|
∗ 𝐺𝑖𝑛𝑖𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑙𝑒𝑓𝑡) +

|𝑆𝑟𝑖𝑔ℎ𝑡|

|𝑆|
∗ 𝐺𝑖𝑛𝑖𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑟𝑖𝑔ℎ𝑡))                           (6) 



 

13 

 

where |𝑆|, |𝑆𝑙𝑒𝑓𝑡| and |𝑆𝑟𝑖𝑔ℎ𝑡|  represent the number of samples in father node, the number of 

samples in the left children node, and the number of samples in the right children node, 

separately. 𝐺𝑖𝑛𝑖 is the index to describe the impurity of the node:  

𝐺𝑖𝑛𝑖 = 1 − ∑ 𝑃𝑖
2𝑁

𝑖=1                                                                                                                                                     (7) 

 

where 𝑃𝑖 is the probability of the 𝑖th event happening in the node. In the classification decision 

tree, event corresponds to the fraction of a class in one node. 

3.3.2 RF Model 

However, one disadvantage of DT is the propensity to overfit the model, even when 

actively pruning. Moreover, the model is highly sensitive to dataset, which means that the 

structure of the tree may deviate significantly even when a small portion of the training data is 

changed. To supplement the performance of DT, one can use several tree ensemble models, 

including RF. 

RF uses CART (Breiman, 1984) as its base model. The basic idea of RF is that it 

generates a number of trees and combines them by weighted or unweighted averaging or voting 

the results from each tree. The superiority of RF is attributable to bootstrap aggregating and 

random feature selection techniques (Breiman, 2001). The bootstrap aggregating method enables 

each DT to train with a subset of the data with replacement. Meanwhile, feature selection 

strategy allows a limited number of randomly chosen features from each tree for training.  By 

applying these two techniques, RF is able to generate a number of different DTs and merge them 

into a robust tree ensemble. RF outperforms single DT by mitigating overfitting and sensitivity 

of the dataset effectively. Apart from that, one can generate trees in RF via parallel computing to 

reduce computational complexity. Figure 3 details the pseudocode for constructing a simplified 

RF model. 
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Figure 3 Pseudocode for a simplified RF model. 

In Figure 3, M is the total number of trees; N is the size of training samples, and T is the 

number of input variables. When one uses RF for regression tasks:   

 𝑓(𝑇𝑟𝑒𝑒(1) + ⋯ + 𝑇𝑟𝑒𝑒(𝑀)) =
1

𝑀
∑ 𝑇𝑟𝑒𝑒(𝑚)

𝑀
𝑚=1                                                                           (8) 

Alternatively, when one uses RF for classification tasks: 

 𝑓(𝑇𝑟𝑒𝑒(1) + ⋯ + 𝑇𝑟𝑒𝑒(𝑀)) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐∈𝑦|{𝑚|𝑇𝑟𝑒𝑒(𝑚) = 𝑐}|                                                  (9) 

where y is the total number of classes in the classification task. 

Besides the robust structure, another important trait of RF is its ability to interpret feature 

importance. In DT, every node split uses a single feature. One can compute the decrease of 

impurity (i.e., information gain in Equation 6) accordingly and rank features according to the 

average decrease in impurities across all trees in the forest. By identifying the important features 

in determining snowplow trucks’ performance, transportation agencies can make informed 

decisions on truck replacement. For instance, if pavement conditions are the dominant force in 

affecting truck performance, trucks serving roads with poor pavement should operate less 

frequently and/or be replaced sooner.  

3.4  Summary  

In this chapter, mathematic formulations of cost-benefit method and RF are presented. 

Cost-benefit analysis focuses on overall truck fleet costs, while RF analyzes the truck 

performance at the micro-level. RF can complement the optimal life-cycle decision by providing 
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a better understanding of critical factors leading to performance deterioration for transportation 

agencies. In the following chapter, we introduce the detailed datasets used in this study. 
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4.0  DATA COLLECTION 

4.1 Overview 

The proposed methods are applied to determine the optimal replacement cycle and 

examine the performance of Class 8 snowplow trucks operated and maintained by UDOT. The 

dataset contains the snowplow trucks’ performance and utilization records for years 2000 

through 2017. Additionally, working environment information from multiple sources is collected 

for analyzing truck performance. Since the life-cycle analysis and performance evaluation use 

different approaches and datasets, data sources for each method will be introduced in the 

following subsections, separately. 

4.2 Dataset for Cost-Benefit Analysis 

The AATC curve for cost-benefit method consists of the maintenance cost and 

depreciation cost. To derive AATCs with the variation of life cycles, a series of utilization 

information for Class 8 snowplow trucks is needed. Detailed descriptions of the datasets used are 

listed below: 

 Maintenance costs records 

The maintenance costs for each snowplow truck are recorded monthly from 2000 to 2017. 

Maintenance can be classified as commercial repairs and non-commercial repairs, where 

commercial repairs denote restorations by professional technicians from third-party companies 

and non-commercial repairs are restorations by UDOT. The maintenance cost is aggregated by 

service year to obtain the optimal life cycle. 

 Number of trucks 

The number of trucks serving at the same service year is not equivalent to the number of trucks 

serving at the same actual year. This information is required for calculating the annual average 

total cost per truck. The records indicate that there were 831 Class 8 snowplow trucks in total 

serving the roads from 2000 to 2017 in the State of Utah. The oldest snowplow truck started its 

service in 1979 and the latest one started in 2017. For the first service year, there are 473 trucks in 

total. However, the number of trucks decreases with the longer service span. At the 17
th
 service 

year, there are only 32 trucks with available service records.  
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 Mileage records 

The mileage records for each snowplow truck are documented monthly. We sum up the mileage 

data by each service year to calculate AATC per truck per mile. The provided data is determined 

to be of high quality with approximately 0.21% erroneous recording on mileage of extremely 

large values. Further filtering is conducted through interpolation to replace those outliers with 

averaged odometer records of previous and following months. 

 Original purchase data 

The purchase data includes original purchase price and purchase date for each truck. There were 

521 Class 8 snowplow trucks purchased during the years 2000 to 2017 in total. The purchase 

records are used for DB method and inflation-rate evaluation to adjust maintenance costs in 

different actual years. 

 Disposition information 

The Class 8 snowplow trucks will be sold once they cannot function normally and serve the 

roads. Resale information contains resale price and date. The disposition data is utilized to 

estimate the percentage of annual depreciation for DB method. According to the dataset, there 

were 301 Class 8 snowplows sold with valid information from 2000 to 2017. 

 Label of working regions 

The Class 8 snowplow trucks are assigned to different working regions in the State of Utah. Each 

truck is labeled with a specific working region. The four working regions include the Salt Lake 

City region, the Ogden region, the Orem region, and the Richfield region. Cost-benefit analysis 

can be performed based on different regions to explore the variation of optimal life cycles across 

geographical areas. 

4.3 Dataset for Truck Performance Prediction 

RF is one of the popular ML models utilizing performance-related variables to predict the 

entity’s operational efficiency. For prediction purposes, information such as repair costs for each 

downtime, working mileage and fuel consumption per month, service year and load type for each 

truck is extracted. Endogenous variables such as working mileage and fuel consumption are 

further aggregated into annual average consumption across each truck’s entire service span to 

implement the proposed method.  

Other than the endogenous variables that could impact snowplow truck performance, we 

hypothesize that exogenous factors such as weather and terrain type could also potentially affect 
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their operation. Additional data such as snow depth records from 2000 to 2017, functional 

classifications and annual average daily traffic (AADT) of roads in the state of Utah, and land- 

use data indicating whether the truck serves an urban or rural area are collected for the purpose 

of this study. Meanwhile, all snowplow trucks are equipped with Verizon Automatic Vehicle 

Location (AVL) technology. Verizon AVL is a fleet-tracking system which enables monitoring 

and managing the entire mobile equipment. This GPS fleet-tracking system records trucks’ 

location and speed information every two minutes, which allows near real-time monitoring of the 

fleet. To delineate the territorial and/or land-use impact on snowplow truck performance, the 

origin and destination (OD) data of each active trip for every truck was retrieved between 

February 6 to March 31, 2018, when the trucks were performing major winter maintenance 

activities. An active trip refers to the daily trajectory of snowplowing activity for each truck. 

Table 1 lists detailed information of all variables collected.  
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Table 1 Detailed description of all variables. 

Variables Denotation Description Unit Resource 

Year service year 

The service year is determined from the start year 

to 2017 if the truck is still in service, otherwise it 

is determined from the start year to the year that it 

is sold. 

year Utah DOT 

Fuel 
annual average 

fuel consumption 

It records the annual average fuel consumption for 

each truck during its service span. 
gallon/year Utah DOT 

Mi_winter 

annual average 

mileage in winter 

season 

The annual average for each truck in winter season 

during their service span. Winter season is defined 

from November to March (in the year to follow). 

mile/year Utah DOT 

Mi_other 

annual average 

mileage in other 

seasons 

The annual average mileage for each truck in other 

seasons during their service span. This is to 

delineate other operational-similar activities that 

snowplow truck might take on outside the winter 

season  (e.g. the fire truck). 

mile/year Utah DOT 

Type load type 

The class 8 snowplow trucks are classified into 

three types, Type 104, Type 113 and Type 168 

with numbers representing the capacity for snow. 

NA Utah DOT 

Func 

functional 

classification of 

the roads 

The roads are categorized into seven levels, with 1 

representing the highest level and 7 representing 

the lowest level based on the functional 

classification: 

1: Interstate 

2: Other freeway and expressway 

3: Principal arterial 

4: Minor arterial 

5: Major collector 

6: Minor collector 

7: Local streets 

NA Utah DOT 

Vol AADT in 2016 
The AADT in 2016 is used to reflect the volume of 

each road. 
veh/day Utah DOT 

Snow 

annual average 

snow depth during 

truck’s service 

span 

We average the snow depth for each truck during 

their service span to reflect the workload across 

different trucks. 
ml MesoWest  

Area service area type 
The snowplowing activity region is distinguished 

by urban vs. rural regions. 
NA CTPP 

Rank 
rank of major 

repair times 

The rank of major repair times is used to quantify 

the performance of snowplow trucks. It is 

categorized as follows: 

Rank 1: 0-4 times 

Rank 2: 5-8 times 

Rank 3: 9-12 times 

Rank 4: over 12 times 

NA Utah DOT 

 

After acquiring exogenous features, data association is performed to link them with each 

truck. For example, a snowplow truck should only be linked with roads that are in close vicinity 

of its working region. To conduct truck and exogenous features association, we resort to the 
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AVL OD data to estimate the centroid of snowplowing activity. As mentioned earlier, the OD 

data include the origin and destination points for daily active trips of trucks spanning February 6 

to March 31, 2018. Note that most daily snowplowing activity is a round trip, where the origin 

and destination coordinates are quite close for each truck. We therefore average the coordinates 

of all origin and destination points for each snowplow truck to approximate the centroid of 

snowplowing activity. Once the centroid is determined, different ring buffers with varying 

radiuses (i.e. 2km, 5km, and 10km) are created to capture the roads that each truck serves, as 

shown in Figure 4 (a) and (b). Such attempts determined that for 95% of trucks, 2km are 

sufficient to capture the nearby roads that the trucks work on. The road functional classification 

is labelled from 1 to 7, with 1 representing the highest level of mobility and 7 representing the 

lowest level of mobility. The functional classification variable is further averaged out for the 

roads encompassed within the buffer to represent the road characteristics that the truck serves. 

The remaining 5% of trucks that fail to capture nearby roads are replaced with the average 

functional classification value of the 95% of trucks. 

 

      

(a)                                                                                     (b) 
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(c)                                                                     (d) 

 

Figure 4 The functional classification of the roads and the distribution of the centroids of 

snowplow activities  (a); a portion of snowplow trucks with ring buffers (b); the 2016 

AADT of all roads in the state of Utah (c); the distribution of urban area in the state of 

Utah (d). 

 

We further extracted the 2016 AADT of roads that each truck serves using a similar 

approach as described above. The land-use types are roughly classified into rural vs. urban, with 

an urban area defined as a census tract that has a population of more than 5,000 people, and the 

place outside is regarded as a rural area (Hall et al., 2006). This land-use feature is determined by 

the census tract that the truck’s centroid of activity falls into. Population data in the State of Utah 

from 2006 to 2010 is extracted from the Census Transportation Planning Products Program 

(CTPP), a State DOT-funded cooperative program (CTPP, 2019). The AADT and urban areas 

are displayed in Figure 4 (c) and (d). Lastly, snow depth of each year is retrieved from 

MesoWest, a program started at the University of Utah providing access to current and 

historically archived weather observations (MesoWest, 2019). Snow depth is averaged across the 

years of which every truck serves.  
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In this study, frequency of major repairs is used as the main indicator to classify the 

performance of all trucks. This is because satisfactory machine performance would result in good 

maintenance efficiency and less repair times (Swanson, 2001). Previous studies show that a 

single major repair caused by snowplowing activities (e.g. replacement of the axles) is around 

$2,500 on average (Cuelho and Kack, 2002). For simplicity, we define major repair in this study 

as any repair record that costs over $2,000. Based on the range of frequency of major repairs for 

all trucks, we categorized them into four ranks, with detailed classification shown in Table 1. 

Overall, Rank 1 represents trucks with good performance, while Rank 4 indicates poor 

performance. 

Although there were a total of 831 trucks in service between years 2000 to 2017, a 

portion of the trucks (420) started their service prior to the year 2000. Due to data unavailability, 

those trucks are removed from the modeling effort. The OD data from AVL missed activity 

records of 21 trucks due to such causes as resales, temporary maintenances, etc. Eventually, 388 

snowplow trucks with complete records are used for performance prediction. 

4.4 Summary 

In this section, the datasets for life cycle and truck performance analysis are described in 

detail. For cost-benefit analysis, utilization data, purchase, and resale information are leveraged 

to build AATC curve. For performance-prediction analysis, not only utilization information is 

used, exogenous variables quantifying trucks’ working environments are collected as well. In the 

next chapter, we will present the implementation of the proposed methods.  
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5.0  CLASS 8 SNOWPLOW TRUCKS PERFORMANCE ASSESSMENT 

5.1  Overview 

In this chapter, cost-benefit analysis is implemented to obtain the optimal life cycle for 

Class 8 snowplow trucks utilizing the dataset described in Chapter 4. This analysis suggests the 

fundamental strategy for minimizing the overall costs for fleet management. Subsequently, RF is 

proposed to predict truck performance with both endogenous variables and exogenous variables 

related to snow-plowing activities. This analysis explores the important factors accelerating 

performance depreciation, which can help UDOT to complement the replacement strategy 

effectively for Class 8 snowplow trucks. 

5.2  Cost-Benefit Method for Optimal Life-Cycle Analysis 

5.2.1 Inflation Rate and Maintenance Cost 

Inflation is a sustained increase in the general price level of goods and services in an 

economy over a period of time. According to the resale records in Figure 1, the average purchase 

price for one Class 8 snowplow truck is below $100,000 in 2000, while the average purchase 

price reached approximately $150,000 per truck in 2017. This change indicates the necessity of 

taking inflation into account when calculating the total costs throughout its entire life span. For 

maintenance cost records, trucks can be at the same service year but at different actual years. As 

a result, those maintenance costs needs to be multiplied by the inflation rate of the corresponding 

years. Iowa DOT’s study (Scheibe, 2017) used an annual inflation rate of 4.23%. To derive the 

fitted inflation rate in this study, we use the average purchase price in 2000 as the base, and 

predict the purchase price for the following years with various inflation rates (i.e. 4%, 5%, and 

6%) up to 2017. The results are presented in Figure 5. In this figure, it can be observed that if 

setting 4% as the inflation rate, the purchase prices are underestimated for most of the years; 

while a 6% inflation rate overestimates the purchase price significantly as the service cycle 

increases. 5% is therefore considered a reasonable proximate. 
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Average Purchase Prices in Different Actual Years 

 

Figure 5 The average purchase values and estimated purchase values with different 

inflation rates. 

In the following step, maintenance costs in different years are adjusted accordingly based 

on the records of their actual years. In this study, year 2017 is set as the base, and all 

maintenance costs recorded from the previous years are adjusted with the formulation below: 

𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒𝑖 ∗ (1 + 0.05)2017−𝑖                   (10) 

where 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒𝑖 represents the actual maintenance costs recorded at the i
th

 actual year. The 

aggregated maintenance costs in all service years (from 1 to 16 years), the average maintenance 

costs per truck per mile in different years, and the cumulative average maintenance costs are 

shown in Table 2. 
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Table 2 Detailed information regarding maintenance costs. 

 

5.2.2 Depreciation Cost and Surplus Value Curves 

To obtain depreciation curve, the percentage of depreciation in Equation 2 needs to be 

determined first. In this study, we decided to use the average resale value at the 16
th

 service year, 

which is $8,109, as the surplus value s, and the years of useful life n is 16 correspondingly. This 

is because the 16
th

 service year has the highest number of resale records as shown in Figure 1, 

which provides a larger sample size on the trucks’ surplus value. Meanwhile, the average 

purchase price in 2017 ($159,750) is used to indicate the actual purchase value c in Equation 2, 

since all maintenance costs are adjusted to the costs in 2017. As a result, the calculated 

percentage of depreciation p is 17%. Once p is calculated, the depreciation cost in each service 

year and the cumulative depreciation cost can be calculated. The snowplow trucks’ cumulative 

depreciation costs and surplus value with the increase of service span are illustrated in Figure 6. 

Service year Number of trucks Total cost with inflation Total mileage
Average cost (per 

unit per mile)

Cumulative 

average Cost

1 451.00 2141821.75 4720914.00 0.45 0.45

2 457.00 2120095.47 4692610.00 0.45 0.91

3 465.00 2782768.09 4765585.00 0.58 1.49

4 480.00 3376872.04 4595855.00 0.73 2.22

5 462.00 3603744.39 4498135.00 0.80 3.03

6 462.00 4048765.37 4104520.00 0.99 4.01

7 471.00 4324249.44 4023063.00 1.07 5.09

8 476.00 4425360.46 3683168.00 1.20 6.29

9 436.00 4211407.75 3307228.00 1.27 7.56

10 436.00 4293625.37 3167493.00 1.36 8.92

11 416.00 4190546.59 2869841.00 1.46 10.38

12 405.00 4059009.48 2510458.00 1.62 11.99

13 388.00 3770801.03 2299985.00 1.64 13.63

14 379.00 3520676.26 1938350.00 1.82 15.45

15 365.00 2787833.64 1620040.00 1.72 17.17

16 304.00 2044549.29 1051591.00 1.94 19.11
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Figure 6 Accumulative depreciation costs and surplus value curves. 

Figure 6 shows that the truck’s surplus value continuously drops as service span 

increases. Since DB method follows an exponential decay in value, the decrease of surplus value 

in the first several years is very pronounced. At the 7
th

 service year, a snowplow truck merely 

remains one-third of its total value. Yet the surplus value steadily declines after that due to the 

entity’s low remaining value. This indicates that if the snowplow truck fleet is replaced 

frequently, the total cost can be extremely high because of the initial expotential decay in surplus 

values. Hence, the optimal total cost should balance between depreciation cost and maintenance 

cost.    

5.2.3 Total Cost Curve and Optimal Life Cycle 

In the last two subsections, maintenance cost in different service years and cumulative 

depreciation cost are obtained. In this subsection, Equation 5 is implemented to calculate AATCs 

per truck per mile with different service spans. AATCs for life cycle from 1 year to 16 years are 

calculated and presented in Figure 7. 
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Figure 7 AATC per truck per mile with different life cycles. 

Figure 7 indicates that the AATC drops first and then increases gradually with the 

increase of life cycle. For the initial service years, although annual depreciation cost is relatively 

high, maintenance cost is also marginal. This is due to the fact that assets usually maintain 

satisfactory performance as they first start the service. However, maintenance costs start to 

mount up with longer service years, which are caused by more frequent malfunctions and repairs. 

The optimal life cycle can be easily identified as 5 years, where the AATC is $2.59 per truck per 

mile. Yet the current service ages for Class 8 snowplow trucks are mostly concentrated between 

15 to 19 years. Assume there are 500 snowplow trucks operating annually with average working 

mileage of 8,000 miles per truck. If the life cycle for all trucks has shortened from 15 (AATC is 

$3.40 per truck per mile) years to 5 years, UDOT can save approximately $3.24 million every 

year. The implementation of a recommended replacement strategy thus could result in significant 

cost savings. 

In fact, the snowplow trucks are all assigned with specific working regions. Due to the 

terrain differences and miscellaneous other reasons, the optimal life cycles may vary across 

different geographical areas. As a result, we perform the cost-benefit analysis based on different 
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regions in the State of Utah. The trucks’ region classification information is extracted from the 

Verizon AVL trajectory database from January to March 2018. Note that the data does not 

include all the trucks used for the state-wide analysis, due to the relatively short period of time - 

only 471 snowplow trucks are recorded during those two months, yet 831 trucks’ records are 

used for the state-wide analysis from years 2000 to 2017. However, the results can still provide 

much valuable information on how the performance might differentiate across regions. Figure 8 

shows the number of snowplow trucks in each region, namely the Salt Lake City, Ogden, Orem 

and Richfield regions, and Figure 9 illustrates their corresponding activity distribution. 

 

Figure 8 The number of snowplow trucks in four regions. 

 

 

Figure 9 Distribution of snowplow trucks in four regions. 
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Figures 10 through 13 further delineate AATC values by the four different regions. 

 

 

Figure 10 AATC per truck per mile in different replacement years (Salt Lake City Region). 

 

 

Figure 11 AATC per truck per mile in different replacement years (Ogden Region). 
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Figure 12 AATC per truck per mile in different replacement years (Orem Region). 

 

 

Figure 13 AATC per truck per mile in different replacement years (Richfield Region). 
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Figure 14 AATC per truck per mile in different replacement years (four regions). 

 

  

 

Figure 15 Cost comparison using state-wide value as a benchmark (four regions). 
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consistent with the state-wide result (5-year as optimal replacement cycle). The Salt Lake City 

region has an optimal year at 7 and Orem is postponed to 10. This result indicates that the 

snowplow trucks which serve Salt Lake City or Orem regions can potentially have their lifetime 

service extended. Note in Figure 15 that trucks serving the Salt Lake City region have the highest 

cost across all service years, and the values surpass the state-wide average. This suggests that 

those trucks are relatively costly to maintain. On the contrary, trucks serving the Richfield region 

have a relatively lower cost. 

5.3  Performance Prediction by RF Model 

5.3.1 Data Post-Processing 

Data post-processing involves data cleaning, normalization, transformation, feature 

extraction and selection, etc. It oftentimes has a significant impact on generalization performance 

of supervised ML algorithms (Kotsiantis et al., 2006). The following subsections present the data 

post-processing we conducted for RF. 

In order to predict truck performance, all trucks are categorized into four groups based on 

the severity of their repairs. For the entire 388 snowplow truck fleet, the numbers of trucks in 

Ranks 1 to 4 are 264, 83, 34 and 4, separately. The imbalanced classes could result in the model 

downplaying features in the minority classes. To fix this issue, we use a resampling technique to 

sample the minor classes with replacement until the sample sizes are approximately equal across 

classes. Consequently, the final dataset includes information from 997 trucks. The number of 

trucks in Rank 1 remains the same, while the numbers of trucks in Ranks 2 through 4 are 

populated as 249, 244 and 240, separately. 

 

5.3.2 Parameter Tuning and Performance Measurement 

Standard practice of ML involves splitting the dataset into training set and test set, where 

training set is used to train the model and test set is used for evaluating performance of the model 

to the unknown dataset. Before training, some hyperparameters (e.g., the number of trees in RF) 

should be chosen manually to achieve better predictive performance. However, we run the risk of 
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overfitting if the hyperparameters are directly tuned on test set because the information of the 

test set can “leak” into the model and consequently fails to report the generalization ability. To 

address this issue, another portion of the entire dataset, usually referred to as “validation set”, is 

held out to enable the evaluation of trained models and to choose the optimal hyperparameters. 

We then can apply the models with the best hyperparameters to test set to report on 

generalization performance. One potential drawback of this method is that it reduces the size of 

training data by partitioning the available data into three parts (i.e. training, validation and test 

sets). One remedy to this is to use the K-fold Cross-Validation (K-fold CV) (Kohavi, 1995). 

With K-fold CV approach, the data is still split into training set and test set. Yet we further 

partition the training set into K subsets with equal size. Each time, one subset is used as a 

validation set, and the remaining K-1 subsets are used to train the model. This process is repeated 

K times and the hyperparameters with the best average performance on validation set are chosen. 

Finally, we apply the selected hyperparameters to the test data. Empirically, K is set as 5 or 10 

since it can lead to less bias and reduce the computational cost (Rodriguez et al., 2009). In this 

paper, we shuffle the data and split it into 80% as training data and 20% as test data, and K is set 

as 5. 

Two performance measurements (i.e. classification-accuracy score and confusion matrix) 

are used for this multi-classification prediction. Generally, the multi-classification problem is 

solved by transforming it into a binary classification problem through one vs. one strategy. For a 

binary classification problem, all samples can be divided into two classes (one class is identified 

as positive class and the other one as negative class). One vs. one strategy assumes one class as 

positive class and other classes as negative. We will have N binary-classifiers, where N is the 

number of classes. In this study, N equals 4 as all samples are classified into four classes (Ranks 

1 through 4). The classifier will output a list with each number in the list representing prediction 

probability to the index-based class. The final predicted class of the input is the class with the 

highest prediction probability. For example, when predicting the ith sample’s repair rank, if the 

prediction output is [0.3, 0.4, 0.8, 0.2] for Ranks 1 through 4, separately, the repair rank will be 

predicted as Rank 3. To measure the performance of the model, the classification accuracy score 

is used to indicate the models’ predicting ability, which is calculated as: 

𝑆 = ∑
𝑁𝑘_𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑁𝑘

𝐾
𝑘=1                 (11) 
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where K is the number of classes, 𝑁𝑘_𝑐𝑜𝑟𝑟𝑒𝑐𝑡 is the total number of samples correctly predicted as 

class k, and 𝑁𝑘 is the total number of samples actually in class k. The classification accuracy 

score measures the correct predictions of the model compared to the total number of data points, 

and it is considered a good measurement for balanced multi-classification problem (Bukhsh et 

al., 2019). 

Hyperparameters for each model are optimized to yield the lowest prediction error. For 

RF, the number of trees M is manually adjusted from 1 to 1000. The training and validation 

curves are presented in Figure 16. Hyperparameters with the highest average accuracy score on 

the validation set across the 5-fold CV is selected for the final models. The validation curve 

shows that when the number of trees M is above 50, the average classification-accuracy scores 

on validation set are higher than 0.9, and the classification ability does not improve much beyond 

500. We therefore set M as 500 to avoid overfitting. 

 

Figure 16 The average classification accuracy score under RF by performing 5-fold CV. 
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matrix, each row represents the instances in an actual class while each column represents the 

instances in a predicted class. The confusion matrix for this multiclassification problem is 

provided in Figure 17. As an example, the number in the first row and second column 

corresponds to the instances that actually belong to Rank 1 but are misclassified as Rank 2.  

 

 

Figure 17 Confusion matrices for RF model on the test dataset. 

 

In Figure 17, it is noted that most trucks are well classified except a small portion of 

trucks in Rank 1 being misclassified as Rank 2. Overall, it can be concluded that RF achieves 

good prediction performance of snowplow trucks based on the classification-accuracy score and 

confusion matrix. 

5.3.3 Feature Importance Analysis 

As mentioned earlier, one highlighted feature for RF is that it can interpret the 

importance of variables. Knowing the importance of features can help agencies better understand 

which features are dominant in affecting snowplow truck performance, and consequently 

prioritize strategies to address deterioration issues. Moreover, it can benefit model construction 

by filtering out insignificant variables and building a model with satisfactory prediction accuracy 

and less variables. Mean decrease impurity is implemented for each split in RF during the 
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training process, and all features are ranked by the average decrease impurity across all trees. 

Table 3 presents the feature importance graph. 

Table 3 The ranking of variables based on the importance to the performance of snowplow 

trucks, where the sum of importance coefficients equals 1. 

Variable Importance Coefficient Variable Importance Coefficient 

Mi 0.33 Func 0.10 

Fuel 0.16 Snow 0.09 

Year 0.15 Area 0.03 

Vol 0.13 Type 0.01 

 

As shown in Table 3, working mileage appears to be the most important feature in 

affecting the performance of snowplow trucks, with its weight being twice as much as the second 

most important feature. Fuel consumption and service year are also main contributing factors that 

lead to performance deterioration. Besides, AADT, functional classification of roads that trucks 

serve, as well as annual average snow depth also matter to the performance. The results 

demonstrate that trucks working in different environments can have different performances even 

with the same work intensity. Also note that loading capacity and area types (rural vs. urban) 

have an insignificant effect to the major repair times. This means that if we drop these two 

variables from the dataset, the performance of the model may be only marginally affected. 

In broad terms, endogenous features comprise 66% of the total factors and exogenous 

features account for 34%. In other words, current work intensity of a snowplow truck (e.g. 

working mileage and service year) should be treated as the top priority when replacement 

strategy is considered.  

5.3.4 An Application of Performance Prediction 

The proposed prediction model can be applied to estimate snowplow truck performance 

over the service time span. Such application can enable effective trend analysis regarding 

performance deterioration and correspondingly suggest a reasonable level of work intensity. For 

demonstration purposes, we choose AADT ranging from 0 to 60,000 veh/d to represent different 

working environments and working mileage in the range of 3,000 to 15,000 miles to represent 
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different work intensities. For simplicity, we assume the class 8 snowplow truck’s fuel 

consumption rate maintains steadily around 6 mpg during the entire operation (Hajibabai et al., 

2014). Road functional classification and annual snow depth are set as 3.20 and 159.20 ml 

(average values across all trucks), separately. Lastly, service region is randomly chosen between 

urban and rural, and type of load is randomly chosen from types 104, 113 and 168, since these 

two variables only marginally impact the performance. Truck performances are predicted at the 

third, sixth, tenth and fifteenth years of service separately, and results are presented in Figure 18. 

 

 

Figure 18 The change of major repair ranks of snowplow trucks across different work 

loads and working environments, where different colors represent different ranks. 
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As we can see in Figure 18, the change of ranks is more sensitive to the working mileage 

than AADT of roads that the truck serves at the same service year, which implies that working 

mileage is more dominant in affecting performance. We also notice that trucks working with 

high annual mileage (above 12,000 miles) are still in Rank 1 while trucks working with annual 

mileage between 10,000 to 12,000 miles are in Rank 2. This inaccuracy may be caused by the 

fact that training samples with high annual working mileage are scarce. Meanwhile, it can be 

noted that there is a trade-off between work intensity and performance, that is more working 

mileage leads to more frequent major repairs. In other words, the average working mileage could 

be appropriately controlled or allocated across trucks to prevent rapid performance deterioration. 

Specifically, trucks operating less than 6,000 miles annually maintain decent performance even 

after serving 15 years. Meanwhile, if we set the threshold at 8,000 miles, trucks can service 

continuously for 10 years while still keeping good performance, and if the annual working 

mileage is controlled below 10,000 miles, the truck can stay in good condition after serving over 

6 years. This result can complement life cycle analysis by adjusting annual average working 

mileage in terms of the replacement year. In this way, it will lead to less repair cost and more 

utilization of trucks. 

Variation among AADT is not as significant as among working mileage. However, if a 

snowplow truck serves roads with high AADT (over 40,000 veh/d), it should work less 

frequently than trucks serving other roads to avoid more repairs. For more accurate prediction, 

we need to take into account the variation of the functional classification of roads and annual 

snow depth as well, since they are also important factors for truck performance. 

 

5.4  Summary 

In this chapter, an in-depth analysis of the optimal life cycle and micro-level truck 

performance assessments are presented. To perform the cost-benefit analysis for obtaining life 

cycle with the minimal total costs, maintenance costs are adjusted by inflation rate and 

aggregated by corresponding service years, and then the cumulative depreciation costs curve is 

constructed by utilizing purchase and resale data. The result indicates that the statewide optimal 

life cycle is 5 years, and the optimal life cycle may vary across different regions. Moreover, RF 
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is proposed to predict truck performance by utilizing operational performance features. This 

proposed model is capable of accurately predicting truck performance in different working 

environments and with different work intensities. Meanwhile, it identifies working mileage, fuel 

consumption, and service year as the top three most important factors leading to performance 

depreciation.
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6.0  CONCLUSIONS 

6.1  Summary 

Snowplow trucks’ performance can affect the road condition and traffic safety during the 

winter season, especially in regions where storms are frequent and unpredictable. Thus, the 

optimizing model is needed to ensure high efficiency and capability of snowplow trucks. This 

project focused on estimating the optimal life cycle and predicting the operational performance 

of Class 8 snowplow trucks managed by UDOT. 

To achieve the first goal, the cost-benefit model is used to provide a thorough analysis in 

search of the optimal year for the replacement of the specific type of snowplow trucks. The 

available maintenance and operation data from 2000 to 2017 justify the effectiveness of the data-

driven approach. The results suggest a shorter replacement cycle than what is currently 

implemented, and provide additional guidance on the procurement, maintenance, and prioritized 

selection of Class 8 snowplow trucks.  

To predict truck performance subsequently, RF is trained by utilizing both endogenous 

and exogenous features regarding operational performance and evaluated on a total of 388 

snowplow trucks. Statistical analysis shows a high prediction accuracy of RF on test dataset. 

Moreover, mean decrease impurity is implemented to explore which variables are significant in 

deteriorating performance of snowplow activities. The ranking of those features can provide a 

better understanding of what causes the lowering of performance and can help transportation 

agencies refine their trucks’ replacement strategy effectively at the micro-level. In addition to 

feature importance analysis, we applied RF to visualize the change of truck performance with the 

increase of the service year by varying work intensity and working environments of those trucks. 

The results suggest a reasonable range of annual average working mileage based on replacement 

year for the purpose of preventing quick deterioration of their performance. 
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6.2  Findings 

The findings in this project are summarized as follows:  

6.2.1 Optimal Life Cycle for Class 8 Snowplow Trucks 

The life-cycle analysis indicates that AATC curve decreases initially and then starts to 

mount up with the increase of service span. One of the key findings of this project is that the 

AATC reaches the lowest average costs when the replacement cycle is 5 years (for trucks of the 

entire state) with the annual average total costs being $2.59 per mile for each truck, assuming the 

inflation rate and the estimated depreciation cost are accurate. When performing the cost-benefit 

analysis by different regions, the results from the Richfield and Ogden regions remain the same, 

whereas trucks serving the Salt Lake City and Orem regions tend to have longer life cycles (7 

years and 10 years, separately) than the statewide optimal life cycle. Currently, most snowplow 

trucks managed by UDOT function for over 13 years. This result suggests accelerating the 

replacement cycle in order to avoid higher accumulative maintenance costs. 

6.2.2 Truck Performance Prediction with RF Model 

By utilizing the exogenous and endogenous features regarding operational performance 

of snowplow trucks, RF is capable of predicting truck performance with high prediction 

accuracy. The importance of those features to performance is further analyzed by the mean 

decrease impurity method. The results show that working mileage, fuel consumption, and service 

span are considered as the most important features influencing truck performance. In broad 

terms, endogenous features comprise 66% of the total factors, and exogenous features account 

for 34%. Compared with exogenous features, endogenous features predominantly affect truck 

performance statewide. We therefore propose to set a threshold limit on work intensity for trucks 

working in different environments to maintain them in good condition and prevent further 

repairs. 

6.3  Recommendations 

According to the study developed in this research, the suggested optimal life cycle for 

Class 8 snowplow trucks managed by UDOT is 5 years on the statewide level. For trucks serving 
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at some regions (i.e. the Salt Lake City and Orem regions), they tend to have longer service 

spans. However, most Class 8 snowplow trucks were disposed over 13 years of utilization. This 

longer service span can incur more frequent major repairs and higher maintenance costs. As a 

result, UDOT should shorten the average life cycle for Class 8 snowplow trucks to cut down 

overall expenses. 

In fact, a small portion of snowplow trucks can still function with satisfactory operational 

efficiency over the calculated optimal life cycle. The proposed RF can help UDOT accurately 

identify the performance of snowplow trucks with a variety of conditions, which can 

complement the replacement strategy effectively. Moreover, the results indicate that both 

exogenous and endogenous features regarding snowplow operations can significantly impact 

truck performance. Hence, we recommend that trucks serving roads with high-traffic volumes 

should function less than trucks serving regular roads to reduce the speed of performance 

deterioration. 
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